高功率全光纤中红外超连续谱激光源

刘 江 刘 昆 师红星 谭方舟 王 璞

(北京工业大学激光工程研究院 国家产学研激光技术中心,北京 100124)

摘要 报道了一个高功率全光纤结构的中红外超连续谱激光源,该光源由 1.55 μm 纳秒脉冲掺铒光纤激光器、包层抽运掺铥光纤放大器以及单模 ZBLAN 光纤组成。首先利用单模光纤将 1.55 μm 纳秒脉冲激光频移至 2.0 μm 波段,然后利用掺铥光纤放大器对其进行功率放大,最后利用 ZBLAN 光纤使掺铥光纤放大器输出的光谱进一步向中红外长波长方向扩展。当掺铥光纤放大器输出功率为 3.95 W 时,ZBLAN 光纤产生了 2.2 W 的中红外超连续 谱激光输出,相应的光谱范围为 1.9~3.75 μm,10 dB 光谱带宽大于 1600 nm。此外,通过增加掺铥光纤放大器的 平均输出功率,中红外超连续谱的输出功率得到了进一步提高,当耦合进单模 ZBLAN 光纤的平均功率为 21 W 时,中红外超连续谱的平均输出功率达到了 16.2 W,相应的光谱范围为 1.9~3.5 μm。

关键词 光纤激光器;光纤放大器;中红外激光;超连续谱激光源

中图分类号 TN248 文献标识码 A doi: 10.3788/CJL201441.0902004

High-Power All-Fiber Mid-Infrared Supercontinuum Laser Source

Liu Jiang Liu Kun Shi Hongxing Tan Fangzhou Wang Pu

(National Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract A high-power all-fiber mid-infrared supercontinuum laser source that consists of a 1.55 μ m nanosecondpulsed erbium-doped fiber laser, a cladding-pumped thulium-doped fiber amplifier and a segment of single-mode ZBLAN fiber is reported. Firstly, the pulse breaks up through modulation instability and the laser shifts to a longer wavelength through Raman processes in the single-mode fiber. Secondly, the nanosecond pulses are amplified through a thulium-doped fiber amplifier. Finally, the output spectrum from the thulium-doped fiber amplifier is extended to the mid-infrared wavelength by using a segment of single-mode ZBLAN fiber. The output power from the ZBLAN fiber is 2.2 W with the launched pump power of 3.95 W at 2.0 μ m wavelength region, the emission spans the wavelength range from 1.9 μ m to 3.75 μ m with a 10 dB bandwidth of greater than 1600 nm. In addition, a higher output power mid-infrared supercontinuum laser source is achieved by increasing the average output power of the thulium-doped fiber amplifier. The ZBLAN fiber produces an average output power of 16.2 W with the coupling pump power of 21 W at 2.0 μ m wavelength region, the emission spans the wavelength range from 1.9 μ m to 3.5 μ m. **Key words** fiber laser; fiber amplifier; mid-infrared laser; supercontinuum laser source

OCIS codes 140.3510; 140.3070; 320.6629

1 引

中红外超连续谱激光源可广泛应用于大气探测、光谱成像、生物医疗以及光电对抗等重要领域, 近年来,中红外超连续谱激光源迅速成为各科研单 位研究的热点。目前,用于产生中红外超连续谱激 光源的中红外光纤主要有氟化物光纤、硫化物光纤、 碲化物光纤等。其中硫化物光纤,特别是 ZBLAN (ZrF₄-BaF₂-LaF₃-AlF₃-NaF)光纤,由于其在中红外

基金项目:国家自然科学基金重点项目(61235010)、国家自然科学基金面上项目(61177048)

作者简介:刘 江(1982—),男,博士研究生,主要从事高功率光纤激光器、高功率光纤放大器等方面的研究。

E-mail: liujiang@emails. bjut. edu. cn

言

导师简介:王 璞(1965—),男,教授,博士生导师,主要从事光纤激光器、光纤放大器及新型光纤光学功能性器件等方面的研究。E-mail: wangpuemail@bjut.edu.cn(通信联系人)

收稿日期: 2014-02-18; 收到修改稿日期: 2014-04-03

波段具有较低的传输损耗、较高的环境稳定性以及 较高的激光损伤阈值,被认为是目前用于产生中红 外超连续谱激光最理想的中红外非线性光纤之一。 目前,基于 ZBLAN 光纤的中红外超连续谱激光源 已有大量报道[1-16],其中使用的抽运源主要有飞 秒、皮秒以及纳秒脉冲激光器,涉及的抽运波长主要 为 1.55 µm 波段的掺铒光纤激光器以及 2.0 µm 波 段的掺铥光纤激光器。2009年,Qin等^[3]报道了飞 秒激光脉冲抽运的中红外超连续谱激光源,其输出 的光谱范围覆盖了可见光波段到 6.28 µm 的波段。 同年,Xia 等^[5]报道了平均输出功率为 10.5 W 的中 红外超连续谱激光源,采用了多级纳秒脉冲掺铒光 纤放大器作为抽运源,产生的中红外超连续谱的范 围为 0.8~4.0 µm,该结果也是目前中红外超连续 谱激光源输出的最高平均功率。与掺铒光纤放大器 相比,掺铥光纤放大器具有更高的光-光转换效 率[17],更有利于作为抽运源用于高功率、高效率中 红外超连续谱的产生。2011年,Kulkarni等^[6]报道 了基于掺铥光纤放大器的中红外超连续谱激光源, 其最大平均输出功率为 2.6 W,光谱范围为 1.9~ 4.5 μm,相应的电-光转换效率也得到了提高。 2013年,Heidt等^[15]也报道了瓦量级输出的皮秒脉 冲掺铥光纤放大器抽运的中红外超连续谱激光源, 光谱范围为 0.75~4.0 µm。中红外超连续谱激光 源方面的研究在国内起步相对较晚,与国外相比还 存在较大的差距。目前,仅有张斌等[16] 较为详细地 报道了百毫瓦量级中红外超连续谱激光源的实验研 究,得到的超连续谱的最大平均输出功率为185 mW, 相应的光谱范围为 1.9~4.3 µm。最近,该课题组也 实现了平均输出功率为7.1W的中红外超连续谱,其 抽运源也为短脉冲掺铥光纤放大器[17]。

本文报道了一个高功率、高转换效率、全光纤结

构的中红外超连续谱激光源。首先利用单模光纤将 1.55 μm 纳秒脉冲激光频移至 2.0 μm 波段处,然后 利用掺铥光纤放大器对其进行功率放大,最后利用 ZBLAN 光纤将输出的光谱进一步向中红外长波长 方向扩展。实验中,ZBLAN 光纤产生了 2.2 W 的 中红外超连续谱输出,相应的光谱范围为 1.9~ 3.75 μm,10 dB 光谱带宽大于 1600 nm。此外,通 过增加激光脉冲的重复频率来减小掺铥光纤放大器 中的非线性效应,从而提高了掺铥光纤放大器的平 均输出功率,最后得到了平均输出功率为16.2 W的 中红外超连续谱激光源,相应的光谱范围为 1.9~ 3.5 μm,平均输出功率未能进一步提高仅受限于当 前掺铥光纤放大器的输出功率。

2 实验装置

高功率全光纤结构中红外超连续谱激光源的实 验装置如图 1 所示,由 1.55 µm 纳秒脉冲掺铒光纤 激光器、2.0 µm 包层抽运掺铥光纤放大器以及单模 ZBLAN 光纤组成。其中,1.55 μm 纳秒脉冲掺铒 光纤激光器的重复频率在 50~200 kHz 可调,输出 激光脉冲宽度为6 ns,3 dB光谱带宽小于2 nm。该 纳秒脉冲掺铒光纤激光器最大平均输出功率为 1.8 W,相应的最高峰值功率可达6 kW。在纳秒脉 冲掺铒光纤激光器输出之后熔接了一段单模无源光 纤 SMF-28 以及 2.0 m 长的单包层掺铥光纤,作用 在于将 1.55 µm 波段的脉冲激光频移至 2.0 µm 波 段处,该单包层掺铥光纤的纤芯直径为 9.0 μm,数 值孔径为 0.16,在 1.55 µm 波段处纤芯抽运吸收率 约为 20 dB/m。由于调制不稳以及拉曼自频移等非 线性效应,具有高峰值功率的纳秒激光脉冲将在单 模无源光纤以及单包层掺铥光纤中发生脉冲分裂现 象,从而导致一系列飞秒激光脉冲的产生^[6]。

Fig. 1 Schematic setup of the high-power all-fiber mid-infrared supercontinuum laser source

如图 1 所示,全光纤结构包层抽运的掺铥光纤 放大器通过偏振无关光学隔离器与频移之后的 2.0 μm波段的激光种子源相连。掺铥光纤放大器 采用了同向抽运,它主要由半导体激光抽运源、(6+ 1)×1 抽运合束器、3.5 m 长的双包层单模掺铥光 纤组成。其中,半导体抽运源中心波长为 793 nm, 单个最大输出功率为 12 W,经(6+1)×1 抽运合束 器耦合进入掺铥增益光纤;掺铥光纤的纤芯直径为 10.0 μm,数值孔径为 0.15,内包层直径为 130 μm, 数值孔径为 0.46,该双包层掺铥光纤在 793 nm 处 包层吸收率为 3 dB/m。为了将放大后的高功率激 光脉冲高效率地耦合进单模 ZBLAN 光纤,在双包 层掺铥光纤之后熔接了大约 1.5 m 长的单模无源 光纤 SMF-28;另外,单模无源光纤也起到了剥离未 吸收的抽运光的作用。实验中,大约 8 m 长的 ZBLAN 氟化物光纤作为产生中红外超连续谱的非 线性介质,该 ZBLAN 光纤的纤芯直径为 9.0 μm, 数值孔径为 0.2,包层直径为 125 μm。ZBLAN 的 数值孔径较大有利于减小其在长波段处的传输损 耗。ZBLAN 光纤输出端面切成 8°角,避免产生菲 涅耳反射,防止在掺铥光纤放大器中产生寄生振荡 影响激光特性。

3 实验结果与分析

当 1.55 μm 纳秒脉冲掺铒光纤激光器重复频率 为 200 kHz、平均输出功率为 1.8 W 时,使用分辨率 为 0.05nm 的光谱分析仪(YOKOGAWA,AQ6375)测 得单包层掺铥光纤之后输出的光谱如图 2 所示。从 图中可以看出,强烈的非线性效应导致 1.55 μm 波段 的纳秒脉冲激光几乎全部频移到了 2.0 μm 波段处, 其超连续谱的范围为 1.8~2.4 μm,3 dB 光谱宽度达 到了 306 nm。由于单模无源光纤 SMF-28 在 2.0 μm 波段处传输损耗相对较大以及单包层掺铥光纤的重 吸收,最后从偏振无关光学隔离器输出的超连续谱的 平均功率约为 300 mW。

为了保证高效的交叉弛豫以实现稳定的激光输 出特性^[18],采用自制的水冷系统对掺铥光纤放大器 进行循环冷却,实验中维持冷却水的温度在15℃左 右。如图3所示,在793nm半导体激光抽运功率较 低时,掺铥光纤放大器平均输出功率随793nm注 入抽运功率基本呈线性增加。然而由于掺铥光纤放 大器中的双包层掺铥光纤的纤芯直径较小,激光脉 冲在其传输过程中更容易产生受激拉曼散射、受激 布里渊散射等非线性效应。当 793 nm 半导体激光 抽运源的输出功率为 40 W时,掺铥光纤放大器的 平均输出功率几乎不再增加。此时,掺铥光纤放大器 器的平均输出功率为 3.95 W,相应的光-光转换效 率为 9.8%。图 4 为掺铥光纤放大器在最高输出功 率时的输出光谱,光谱无法进一步向中红外长波长 方向扩展主要受石英光纤传输损耗的限制。

Fig. 3 Variation in the average output power of the thulium-doped fiber amplifier with the increase of 793 nm incident pump power

图 4 掺铥光纤放大器之后输出的光谱 Fig. 4 Optical spectrum from the thulium-doped fiber amplifier

图 5 为 ZBLAN 光纤产生的超连续谱的平均输 出功率随 2000 nm 注入抽运功率变化的关系图。从 图中可以看出,超连续谱的平均输出功率随2000 nm 注入抽运功率的增大几乎呈线性增加。当掺铥光纤 放大器输出功率为 3.95 W 时, ZBLAN 光纤产生了 2.2 W 的中红外超连续谱激光输出,相应的光-光转 换效率为 69%(实验测得单模无源光纤 SMF-28 与单 模 ZBLAN 光纤之间的机械连接损耗约为 20%)。图 6 所示为中红外单色仪测得的中红外超连续谱激光 源的输出光谱,其波长范围为1.9~3.75 μm,10 dB 光 谱带宽大于 1600 nm。实验中,还可以通过优化单模 ZBLAN 光纤的长度以及采用更高峰值功率的脉冲激

图 5 中红外超连续谱平均输出功率随 2000 nm 注入功率的变化

Fig. 5 Variation in the average output power of the supercontinuum source with the increase of 2000 nm incident power

图 6 单模 ZBLAN 光纤之后输出的光谱 Fig. 6 Optical spectrum after the single-mode ZBLAN fiber

另外,由于实验中所使用的掺铥光纤放大器产生 了强烈的非线性效应从而限制了其平均功率的进一 步提高,也限制了中红外超连续谱平均功率的增加。 实验中,为了得到更高功率的中红外超连续谱激光 源,采用了重复频率为 1.2 MHz、脉冲宽度为3 ns的 掺铒光纤激光器作为种子源。1.55 μm 纳秒脉冲激

Fig. 7 Optical spectrum of the thulium-doped fiber amplifier at different output power values when the repetition rate is 1.2 MHz 光经过单模无源光纤 SMF-28 以及 2 m 长的单包层 掺铥光纤之后,平均输出功率为 2.8 W。图 7所示为 重复频率为 1.2 MHz 时掺铥光纤放大器不同平均输 出功率时的光谱,从图中可以看出,随着抽运功率的 增加,输出光谱逐渐向中红外长波长方向扩展。

当 793 nm 半导体抽运源的输出功率为 70 W 时,包层抽运双包层掺铥光纤放大器产生了13.3 W 的平均输出功率,相应的峰值功率约为 3.7 kW。 图 8所示为中红外超连续谱激光源平均输出功率随 2000 nm 注入抽运功率变化的关系图,测得 ZBLAN 光纤输出的中红外超连续谱的最大平均功率为 8.1 W,相应的光-光转换效率为76%。图9所示为 重复频率为1.2 MHz 时中红外超连续谱激光源不 同输出功率时的光谱,随着输出功率的增加,光谱逐 渐向中红外长波长波段扩展,平均输出功率未能进 一步提高仅受限于当前掺铥光纤放大器的平均输出 功率。当平均输出功率最大时,中红外超连续谱的 范围为1.9~3.5 µm,该输出光谱窄于低重复频率 时的光谱,可能由于重复频率的增加导致抽运脉冲 激光单脉冲能量的降低,进而降低了 ZBLAN 光纤 中的非线性效应。

图 8 重复频率为 1.2 MHz 时中红外超连续谱平均输出 功率随注入功率的变化

Fig. 8 Variation in the average power of the supercontinuum source with the increase of incident power at the repetition rate of 1.2 MHz

图 9 中红外超连续谱激光源不同输出功率时的光谱 Fig. 9 Optical spectrum of the supercontinuum laser source at different output powers 此外,通过增加掺铥光纤放大器的平均输出功 率,中红外超连续谱的平均输出功率得到了进一步 提高,当耦合进单模 ZBLAN 氟化物光纤的平均功 率为 21 W时,中红外超连续谱的平均输出功率达 到了 16.2 W,相应的光谱范围为 1.9~3.5 μm,具 体实验数据和结果还在整理之中,将在后续工作中 加以详细报道。

4 结 论

报道了一个高功率全光纤结构的中红外超连续 谱激光源。首先利用单模光纤将 1.55 μm 波段的 纳秒脉冲激光频移至 2.0 µm 波段处,然后利用掺 铥光纤放大器对其进行功率放大,放大后的高峰值 功率的激光脉冲在单模 ZBLAN 光纤中产生了强烈 的非线性效应,从而实现输出激光光谱向中红外长 波长波段扩展。当 1.55 µm 纳秒脉冲抽运源的重 复频率为 200 kHz、输出功率为 3.95 W时,ZBLAN 光纤产生了 2.2 W 的中红外超连续谱输出,相应的 光谱范围为 1.9~3.75 µm,10 dB 光谱带宽大于 1600 nm。此外,通过增加掺铥光纤放大器的平均 输出功率,得到了平均输出功率为16.2 W的中红 外超连续谱激光源,相应的光谱范围为1.9~ 3.5 µm,平均输出功率未能进一步提高仅受限于当 前掺铥光纤放大器的平均输出功率。该类高功率全 光纤结构的中红外超连续谱激光源可广泛应用于科 学研究、大气探测、激光医疗以及军事国防等领域。

参考文献

- 1 C Xia, M Kumar, O P Kulkarni, et al.. Mid-infrared supercontinuum generation to 4. 5 microm in ZBLAN fluoride fibers by nanosecond diode pumping [J]. Opt Lett, 2006, 31 (17): 2553-2555.
- 2 C Xia, M Kumar, M Cheng, *et al.*. Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power[J]. Opt Express, 2007, 15(3): 865-871.
- 3 G Qin, X Yan, C Kito, *et al.*. Ultrabroadband supercontinuum generation from ultraviolet to 6. 28 μ m in a fluoride fiber[J]. Appl Phys Lett, 2009, 95(16): 161103.
- 4 G Qin, X Yan, C Kito, *et al.*. Supercontinuum generation spanning over three octaves from UV to 3. 85 μ m in a fluoride fiber[J]. Opt Lett, 2009, 34(13): 2015-2017.

- 5 C Xia, Z Xu, M N Islam, *et al.*. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μ m with direct pulse pattern modulation [J]. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(2): 422-434.
- 6 P Kulkarni, V V Alexander, M Kumar, *et al.*. Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier[J]. J Opt Soc Am B, 2011, 28(10): 2486-2498.
- 7 M Eckerle, C Kieleck, J Widerski, *et al.*. Actively *Q*-switched and mode-locked Tm^{3+} -doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber[J]. Opt Lett, 2012, 37(4); 512-514.
- 8 C Agger, C Petersen, S Dupont, et al.. Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation[J]. J Opt Soc Am B, 2012, 29(4): 635-645.
- 9 J Geng, Q Wang, S Jiang. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier[J]. Appl Opt, 2012, 51(7): 834-840.
- 10 V V Alexander, O P Kulkarni, M Kumar, *et al.*. Modulation instability initiated high power all-fiber supercontinuum lasers and their applications[J]. Opt Fiber Technol, 2012, 18(5): 349-374.
- 11 F Théberge, J Daigle, D Vincent, et al.. Mid-infrared supercontinuum generation in fluoroindate fiber[J]. Opt Lett, 2013, 38(22): 4683-4685.
- 12 I Kubat, C S Agger, P M Moselund, et al.. Mid-infrared supercontinuum generation to 4. 5 μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm [J]. J Opt Soc Am B, 2013, 30(10): 2743-2757.
- 13 W Yang, B Zhang, K Yin, *et al.*. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system[J]. Opt Express, 2013, 21(17): 19732-19742.
- 14 J Swiderski, M Michalska, G Maze. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched modelocked Tm-doped fiber laser and amplifier system [J]. Opt Express, 2013, 21(7): 7851-7857.
- 15 A M Heidt, J H V Price, C Baskiotis, et al.. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diodepumping at 2 μm[J]. Opt Express, 2013, 21(20): 24281-24287.
- 16 Zhang Bin, Yang Weiqiang, Hou Jing, et al.. All-fiber mid-infrared supercontinuum source from 1.9 μm to 4.3 μm [J]. Chinese J Lasers, 2013, 40(11): 1102013.
 政 減 核主張 旋 帶 筆 1.0 ~ 4.3 μm 合米纸由红粉器液

张 斌,杨未强,侯 静,等. 1.9~4.3 μm 全光纤中红外超连 续谱光源[J]. 中国激光, 2013, 40(11): 1102013.

- 17 W Yang, B Zhang, K Yin, *et al.*. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system[J]. Opt Express, 2013, 21(17): 19732-19742.
- 18 Liu Jiang, Wang Pu. High-power narrow-bandwidth continuous wave thulium-doped all-fiber laser[J]. Chinese J Lasers, 2013, 40(1): 0102001.
 - 刘 江,王 璞. 高功率窄线宽全光纤结构掺铥连续光纤激光器 [J]. 中国激光, 2013, 40(1): 0102001.

栏目编辑:殷建芳